Reducing topological defects in self-organizing maps using multiple scale neighborhood functions
نویسندگان
چکیده
In this paper, we propose a method of reducing topological defects in self-organizing maps (SOMs) using multiple scale neighborhood functions. The multiple scale neighborhood functions are inspired by multiple scale channels in the human visual system. To evaluate the proposed method, we applied it to the traveling salesman problem (TSP), and examined two indexes: the tour length of the solution and the number of kinks in the solution. Consequently, the two indexes are lower for the proposed method. These results indicate that our proposed method has the ability to reduce topological defects.
منابع مشابه
Asymmetric neighborhood functions accelerate ordering process of self-organizing maps.
A self-organizing map (SOM) algorithm can generate a topographic map from a high-dimensional stimulus space to a low-dimensional array of units. Because a topographic map preserves neighborhood relationships between the stimuli, the SOM can be applied to certain types of information processing such as data visualization. During the learning process, however, topological defects frequently emerg...
متن کاملAdaptation Neighborhoods of Self-Organizing Maps for Image Restoration
Adaptation neighborhoods of self-organizing maps for image restoration are presented in this study. Generally, self-organizing maps have been studied for the ordering process and the convergence phase of weight vectors. As a new approach of self-organizing maps, some methods of adaptation neighborhoods for image restoration are proposed. The present algorithm creates a map containing one unit f...
متن کاملAuto-SOM: Recursive Parameter Estimation for Guidance of Self-Organizing Feature Maps
An important technique for exploratory data analysis is to form a mapping from the high-dimensional data space to a low-dimensional representation space such that neighborhoods are preserved. A popular method for achieving this is Kohonen's self-organizing map (SOM) algorithm. However, in its original form, this requires the user to choose the values of several parameters heuristically to achie...
متن کاملTopological structure dynamics revealing collective evolution in active nematics
Topological defects frequently emerge in active matter like bacterial colonies, cytoskeleton extracts on substrates, self-propelled granular or colloidal layers and so on, but their dynamical properties and the relations to large-scale organization and fluctuations in these active systems are seldom touched. Here we reveal, through a simple model for active nematics using self-driven hard ellip...
متن کاملEnhancing Brain Tissue Segmentation and Image Classification via 1D Kohonen Networks and Discrete Compactness: An Experimental Study
The Discrete Compactness is a factor that describes the shape of an object. One of its main strengths lies in its low sensitivity to variations, due to noise or capture defects, in the shape of an object. Then, we use Discrete Compactness in order to propose a new approach for non-supervised classification of tissue in Computed Tomography brain slices. The proposal is sustained on the use of On...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bio Systems
دوره 90 1 شماره
صفحات -
تاریخ انتشار 2007